Видео

Симметрирование (выравнивание) фазных напряжений и нагрузок. Способы устранения несимметрии нагрузок фаз

Напряжение между каждой фазой трехфазной сети переменного тока и нулевым проводом, в идеальном случае, составляет 220 Вольт. Однако, при подключении к каждой из фаз питающей сети различных нагрузок, отличающихся по характеру и по величине, возникает иногда довольно значительный перекос фазных напряжений.

Если бы соблюдалось равенство сопротивлений нагрузок, то и протекающие через них токи также были бы равны между собой. Их геометрическая сумма была бы обращена в нуль. Но в результате неравенства этих токов возникает уравнительный ток в нулевом проводе (происходит смещение нулевой точки) и появляется напряжение смещения .

Фазные напряжения меняются друг относительно друга, и получается перекос фаз . Следствием такого перекоса фаз становится увеличение потребления электроэнергии из сети и неправильная работа электроприемников, ведущая к сбоям, отказам, и преждевременному износу изоляции. Безопасность потребителя, в такой ситуации, ставится под угрозу.

Для автономных трехфазных источников электроэнергии неравномерность загрузки фаз чревата разного рода механическими повреждениями. В результате – нарушение работы электроприемников, износ источников электроэнергии, повышенный расход масла, топлива и охлаждающей жидкости для генератора. В конечном итоге увеличиваются расходы как на электроэнергию в целом, так и на расходные материалы для генератора.

Для устранения перекоса фаз, выравнивания фазных напряжений, следует изначально рассчитать токи нагрузок для каждой из трех фаз. Однако не всегда удается это сделать заранее. В промышленных же масштабах потери вследствие перекоса фазных напряжений могут быть просто колоссальными, а экономический эффект, в определенной степени, разрушительным.

Для устранения негативных тенденций следует применить симметрирование фаз . Для этой цели разработаны так называемые симметрирующие трансформаторы .

В трехфазный трансформатор, обмотки фаз как высшего, так и низшего напряжений которого соединены звездой, встраивается дополнительно симметрирующее устройство в виде дополнительной обмотки, которая опоясывает обмотки высокого напряжения. Эта дополнительная обмотка рассчитана так, чтобы выдерживать длительный ток номинальной нагрузки трансформатора, т.е. на номинальный ток одной фазы. Обмотка включается в разрыв нулевого провода трансформатора из следующего расчета.

При возникновении уравнительного тока в нулевом проводе, вследствие несимметричной нагрузки, потоки нулевой последовательности в магнитопроводе (рабочих обмоток трансформатора) будут полностью компенсированы направленными противоположно потоками нулевой последовательности симметрирующей обмотки. В конечном счете, перекос фазных напряжений целиком предотвращается.

Схема включения обмоток трехфазного трансформатора для симметрирования фаз показана на рисунке 1.

Рис. 1. Устройство симметрирующего трансформатора

1) Трехстержневой магнитопровод трехфазного трансформатора.

2) Обмотки высокого напряжения.

3) Обмотки низкого напряжения.

4) Обмотка из компенсационных витков.

5) Дистанционные клинья.

6) Конец компенсационной обмотки, подключаемой к нейтрали обмоток низкого напряжения.

7) Конец компенсационной обмотки, который выводится наружу.

Энергетические характеристики таких трансформаторов, короткого замыкания, и другие, от добавления симметрирующего устройства почти не меняются, зато значительно сокращаются потери электроэнергии в сети. При неравномерной нагрузке фаз, система фазных напряжений симметрируется так же, как и при соединении обмоток по схеме звезда-зигзаг.

Расчеты и эксперименты исследователей показали, что при правильном согласовании витков компенсационных и рабочих обмоток, напряжение на компенсационной обмотке трансформатора с симметрирующим устройством, при равном номинальному токе в нулевом проводе, достигает величины номинального фазного напряжения, уравновешивая на нейтрали обмоток низкого напряжения ЭДС нулевой последовательности, возникающей от рабочих обмоток, до нуля.

Такая конструкция сильно снижает сопротивление нулевой последовательности трехфазного силового трансформатора. Это дает значительное увеличение токов короткого замыкания на одной фазе, и является одним из главных достоинств симметрирующих трансформаторов, так как обеспечивает надежную и легкую настройку и ее надежную работу при КЗ.

Более того, разрушающее воздействие большого тока однофазного КЗ на обмотки такого симметрирующего трансформатора значительно меньше, чем от тока КЗ в отсутствие обмотки симметрирования, так как разрушительный мощный несимметричный поток нулевой последовательности теперь полностью компенсируется.

В любительской практике не так часто можно встретить антенны, в которых входное сопротивление является равным фидера, а также выходному сопротивлению передатчика. В преимущественном большинстве случаев обнаружить такое соответствие не удается, поэтому нужно использовать специализированные согласующие устройства. Антенна, фидер, а также выход передатчика входят в единую систему, в которой энергия передается без каких-либо потерь.

Как это сделать?

Чтобы реализовать эту достаточно сложную задачу, нужно использовать согласующие устройства в двух основных местах - это точка соединения антенны с фидером, а также точка, где фидер соединяется с выходом передатчика. Наиболее широкое распространение сегодня получили специализированные трансформирующие устройства, начиная от колебательных резонансных контуров и заканчивая коаксиальными трансформаторами, выполненными в виде отдельных отрезков коаксиального кабеля нужной длины. Все эти согласующие устройства используются для согласования сопротивлений, что позволяет в конечном итоге минимизировать общие потери в линии передач и, что более важно, снизить внеполосные излучения.

Сопротивление и его особенности

В преимущественном большинстве случаев выходное сопротивление стандартно в современных широкополосных передатчиках составляет 500 м. При этом стоит отметить, что многие коаксиальные кабеля, использующиеся в качестве фидера, также отличаются стандартной величиной волнового сопротивления на уровне 50 или 750 м. Если же рассматривать антенны, для которых могут использоваться согласующие устройства, то в зависимости от конструкции и типа в них входное сопротивление имеет достаточно широкий диапазон величин, начиная от нескольких Ом и заканчивая сотнями и даже большим количеством.

Известно, что в одноэлементных антеннах входное сопротивление на резонансной частоте является практически активным, при этом чем больше частота передатчика будет отличаться от резонансной в те или иные стороны, тем больше появится реактивной составляющей индуктивного или же емкостного характера во входном сопротивлении самого устройства. В то же время многоэлементные антенны имеют входное сопротивление на резонансной частоте, имеющее комплексный характер за счет того, что в процесс образования реактивной составляющей свой вклад вносят различные пассивные элементы.

Если входное сопротивление относится к активным, его можно согласовать с сопротивлением, используя специализированное согласующее устройство для антенны. При этом стоит отметить, что потери здесь являются практически незначительными. Однако сразу после того, как во входном сопротивлении начнет образовываться реактивная составляющая, процедура согласования будет все более сложной, и нужно будет использовать все более и более сложное согласующие устройство для антенны, возможности которого позволят обеспечить компенсацию нежелательной реактивности, и располагаться оно должно непосредственно в точке питания. Если реактивность не будет компенсироваться, это негативно скажется на КСВ в фидере, а также существенно увеличит общие потери.

Нужно ли это делать?

Попытка полноценной компенсации реактивности в нижнем конце фидера является безуспешной, поскольку ограничивается характеристиками самого устройства. Любые перестройки частоты передатчика в границах узких участков любительских диапазонов в конечном итоге не приведут к появлению значительной реактивной составляющей, вследствие чего зачастую не возникает потребности в ее компенсации. Также стоит отметить, что правильный проект многоэлементных антенн также не предусматривает большой реактивной составляющей имеющегося входного сопротивления, что не требует ее компенсации.

В эфире можно достаточно часто встретить различные споры о том, какую роль и назначение имеет согласующее устройство для антенны («длинный провод» или другого типа) в процессе согласования с ней передатчика. Некоторые возлагают на него достаточно большие надежды, в то время как другие просто считают обыкновенной игрушкой. Именно поэтому нужно правильно понимать, чем же действительно может на практике помочь антенный тюнер, а где его использование будет лишним.

Что это такое?

В первую очередь, нужно правильно понимать, что тюнер представляет собой высокочастотный трансформатор сопротивлений, при помощи которого при необходимости можно будет обеспечить компенсацию реактивности индуктивного или же емкостного характера. Можно рассмотреть предельно простой пример:

Разрезной вибратор, который на резонансной частоте имеет активное входное сопротивление на уровне 700 м, и при этом в нем используется с передатчиком, имеющий входное сопротивление около 500 м. Тюнеры устанавливаются на выходе передатчика, и в этой ситуации будут представлять собой для какой-либо антенны (включая «длинный кабель») согласующие устройства между передатчиком и фидером, безо всяких сложностей справляясь со своей основной задачей.

Если в дальнейшем провести перестройку передатчика на частоту, которая отличается от резонансной частоты антенны, то в таком случае во входном сопротивлении устройства может появиться реактивность, которая впоследствии практически моментально начнет проявляться и на нижнем конце фидера. При этом согласующее устройство «Р» любой серии также сможет ее компенсировать, и передатчик снова получит согласованность с фидером.

Что будет на выходе, где фидер соединяется с антенной?

Если вы используете тюнер исключительно на выходе передатчика, то в таком случае не получится обеспечить полноценную компенсацию, и в устройстве начнут возникать различные потери, так как будет присутствовать не до конца точное согласование. В такой ситуации нужно будет использовать еще один, подключающийся между антенной и фидером, что позволит полностью исправить положение и обеспечить компенсацию реактивности. В данном примере фидер выступает в качестве согласованной линии передачи, имеющей произвольную длину.

Еще один пример

Рамочная антенна, у которой активное входное сопротивление имеет значение около 1100 м, нужно согласовать с линией передачи на 50 Ом. Выход передатчика в данном случае имеет значение 500 м.

Здесь нужно будет использовать согласующее устройство для трансивера или антенны, которое будет устанавливаться в точке, где фидер подключается к антенне. В преимущественном большинстве случаев многие любители предпочитают использовать ВЧ трансформаторы различных типов, оснащенные ферритовыми сердечниками, но на самом деле более удобным решением будет изготовление четвертьволнового коаксиального трансформатора, который можно сделать из стандартного 75-омного кабеля.

Как это реализовать?

Длина используемого отрезка кабеля должна рассчитываться по формуле А/4*0.66, где А представляет собой длину волны, а 0.66 является коэффициентом укорочения, использующимся для преимущественного большинства современных коаксиальных кабелей. Согласующие устройства КВ антенн в данном случае будут подключаться между 50-омным фидером и входом антенны, и если их свернуть в бухту диаметром от 15 до 20 см, то в таком случае он будет также выступать в качестве симметрирующего устройства. Фидер будет полностью автоматически согласовываться с передатчиком, а также при равенстве их сопротивлений, причем в такой ситуации можно будет полностью отказаться от услуг стандартного антенного тюнера.

Другой вариант

Для такого примера можно рассмотреть еще один оптимальный способ согласования - при помощи кратного половине волны или же полуволнового коаксиального кабеля в принципе с любым волновым сопротивлением. Его включают между тюнером, располагающимся возле передатчика, и антенной. В данном случае входное сопротивление антенны, имеющее значение на уровне 110 Ом, переносится на нижний конец кабеля, после чего, используя антенное согласующее устройство, трансформируется в сопротивление 500 м. В данном случае предусматривается полное согласование передатчика с антенной, а фидер используется в качестве повторителя.

В более тяжелых ситуациях, когда входное сопротивление антенны является несоответствующим волновому сопротивлению фидера, которое, в свою очередь, не соответствует выходному сопротивлению передатчика, требуются согласующие устройства КВ антенн в количестве двух штук. В данном случае одно используется вверху, чтобы добиться согласования фидера с антенной, в то время как другое обеспечивает согласование фидера с передатчиком внизу. При этом нет никакой возможности сделать какое-нибудь согласующее устройство своими руками, которое можно будет использовать одно для согласования всей цепи.

Возникновение реактивности сделает ситуацию еще более сложной. В данном случае согласующие устройства КВ диапазонов позволят существенно улучшить согласование передатчика с фидером, обеспечив таким образом значительное облегчение работы оконечного каскада, но большего от них ждать не стоит. Из-за того, что фидер будет рассогласован с антенной, появятся потери, поэтому эффективность работы самого устройства будет заниженной. Активированный КСВ-метр, установленный между тюнером и передатчиком, обеспечит фиксацию КСВ=1, а между фидером и тюнером такого эффекта не получится добиться, так как присутствует рассогласованность.

Вывод

Польза тюнера заключается в том, что он позволяет поддерживать оптимальный режим передатчика в процессе работы на несогласованную нагрузку. Но при этом не может обеспечиваться улучшение эффективности работы любой антенны (включая «длинный провод») - согласующее устройства бессильны, если она рассогласована с фидером.

П-контур, который используется в выходном каскаде передатчика, также может применяться в качестве антенного тюнера, но только в том случае, если будет присутствовать оперативное изменение индуктивности и каждой емкости. В преимущественном большинстве случаев как ручные, так и автоматические тюнеры представляют собой резонансные контурные перестраиваемые устройства вне зависимости от того, собираются они фабрично или кто-то решил сделать согласующее устройство для антенны своими руками. В ручных присутствует два или три регулирующих элемента, а сами они не оперативны в работе, в то время как автоматические являются дорогими, а для работы при серьезных мощностях их стоимость может быть крайне высокой.

Широкополосное согласующее устройство

Такой тюнер удовлетворяет преимущественному большинству вариаций, при которых нужно обеспечить согласование антенны с передатчиком. Такое оборудование является довольно эффективным в процессе работы с антеннами, использующихся на гармониках, если фидер представляет собой полуволновой повторитель. В такой ситуации входное сопротивление антенны отличается на разных диапазонах, но при этом тюнер позволяет обеспечить легкую согласованность с передатчиком. Предлагаемое устройство может без труда функционировать при мощностях передатчика до 1.5 кВт в частотной полосе от 1.5 до 30 МГц. Такое устройство можно сделать даже своими руками.

Основными элементами тюнера выступает ВЧ автотрансформатор на от отклоняющей системы телевизор УНТ-35, а также переключатель, рассчитанный на 17 положений. Предусматривается возможность использования конусных колец от моделей УНТ-47/59 или каких-либо других. В обмотке присутствует 12 витков, которые наматываются в два провода, при этом начало одной объединяется с концом второй. На схеме и в таблице нумерация витков сквозная, в то время как сам провод многожильный и заключен в фторопластовую изоляцию. По изоляции диаметр провода составляет 2.5 мм, предусматривая отводы от каждого витка, начиная с восьмого, если вести счет от заземленного конца.

Автотрансформатор устанавливается предельно близко к переключателю, при этом соединительные проводники между ними должны иметь минимальную длину. Предусматривается возможность использования переключателя на 11 положений, если будет сохранена конструкция трансформатора с не таким большим количеством отводов, к примеру, с 10 по 20 виток, но в такой ситуации произойдет уменьшение и интервала трансформации сопротивлений.

Зная точное значение входного сопротивления антенны, можно использовать такой трансформатор для того, чтобы согласовать антенну с фидером 50 или 750 м, используя только самые необходимые отводы. В такой ситуации его размещают в специальную влагонепроницаемую коробку, после чего заливают парафином и ставят в непосредственно в точке питания антенны. Само по себе согласующее устройство может выполняться в качестве самостоятельной конструкции или же включаться в состав специального антенно-коммутационного блока какой-нибудь радиостанции.

Для наглядности метка, установленная на ручке переключателя, показывает величину сопротивления, которое соответствует данному положению. Чтобы обеспечить полноценную компенсацию реактивной индуктивной составляющей, предусматривается возможность последующего подключения переменного конденсатора.

В приведенной таблице четко указывается, каким образом сопротивление зависит от количества сделанных вами витков. В данном случае произведение расчетов осуществлялось, основываясь на соотношении сопротивлений, которое находится в квадратичной зависимости от общего количества сделанных витков.

Последние мои публикации, посвященные КВ антеннам, вызвали у многих читателей ряд вопросов о конструкции используемых в них трансформаторов и дросселей.

Этот вопрос хорошо освещен в радиолюбительской литературе и многочисленных статьях и, казалось бы, не требует дальнейших комментариев.

Самодельные широкополосные симметрирующие дроссели и трансформаторы на ферритовых трубках

Ферритовые трансформаторы на ферритовых трубках выполняют сразу несколько функций: трансформируют сопротивление, симметрируют токи в плечах антенны и подавляют синфазный ток в оплетке коаксиального фидера. Наилучшим отечественным ферритовым материалом для широкополосных трансформаторов является феррит марки 600НН, но из него не изготавливали трубчатых сердечников...

Сейчас в продаже появились ферритовые трубки зарубежных фирм с хорошими характеристиками,
в частности FRR-4,5 и FRR-9,5, имеющие размеры dxDxL 4,5x14x27 и 9,5х17,5х35 соответственно. Последние трубки использовались в качестве помехо-подавляющих дросселей на кабелях, соединяющих системные блоки компьютеров с мониторами на электронно-лучевых трубках. Сейчас их массово заменяют на матричные мониторы, а старые выбрасывают вместе с ферритами.

Рис.1. Ферритовые трубки FRR-9,5

Четыре таких трубки, сложенные рядом по две, образуют эквивалент «бинокля», на котором можно разместить обмотки трансформаторов, перекрывающих все КВ диапазоны от 160 до 10 м. Трубки имеют скругленные грани, что исключает повреждения изоляции проводов обмоток. Трубки удобно скрепить вместе, обмотав широким скотчем.

Из различных схем широкополосных трансформаторов я использовал простейшую, с раздельными обмотками, витки которых имеют дополнительную связь за счет плотной скрутки проводников между собой, что позволяет уменьшить индуктивность рассеяния и за счет этого повысить верхнюю границу рабочей полосы частот. Одним витком будем считать провод, продетый через отверстия обеих трубок «бинокля». Половиной витка - провод, продетый через отверстие одной трубки «бинокля». В таблицу
сведены варианты трансформаторов, выполнимых на этих трубках.

В таблицу сведены варианты трансформаторов, выполнимых на этих трубках.

Число витков первичной обмотки

Число витков вторичной обмотки

Коэффициент трансформации напряжений

Коэффициент трансформации сопротивлений

Соотношения сопротивлений при источнике 50 Ом

1 1 1:1 1:1 50:50
1 1,5 1:1.5 1:2.25 50:112.5
1 2 1:2 1:4 50:200
1 2.5 1:2.5 1:6.25 50:312.5
1 3 1:3 1:9 50:450
1 3.5 1:3.5 1:12.5 50:625
2 1 1:0.5 1:0.25 50:12.5
2 1,5 1:0.75 1:0.56 50:28
2 2 1:1 1:1 50:50
2 2,5 1:1.25 1:1.56 50:78
2 3 1:1,5 1:2,25 50:112,5
2 3,5 1:1,75 1:3 50:150
2 4 1:2 1:4 50:200
2 4,5 1:2,25 1:5 50:250
2 5 1:2,5 1:6,25 50:312.5
2 5,5 1:2,75 1:7,56 50:378
2 6 1:3 1:9 50:450
2 6,5 1:3,25 1:10,56 50:528
2 7 1:3,5 1:12,5 50:625

Как видим, получается весьма широкий выбор соотношения сопротивлений. Трансформатор с коэффициентом 1:1 - подобно дросселю симметрирует токи в плечах антенны и подавляет синфазный ток в оплетке кабеля питания. Прочие трансформаторы в дополнение к этому еще и трансформируют сопротивления. Чем руководствоваться при выборе числа витков? При прочих равных условиях трансформаторы с одновитковой первичной обмоткой имеют примерно в четыре раза более высокую нижнюю границу полосы пропускания по сравнению с двухвитковой, но и верхняя частота полосы пропускания и них значительно выше. Поэтому для трансформаторов, используемых от диапазонов 160 м и 80 м лучше использовать двухвитковые варианты, а от 40 м и выше - одновитковые. Использовать целочисленные значения числа витков предпочтительно, если желательно сохранить симметрию и разнести выводы обмоток на противоположные стороны «бинокля».

Чем выше коэффициент трансформации, тем труднее получить широкую полосу пропускания, поскольку возрастает индуктивность рассеяния обмоток. Компенсировать ее можно путем включения конденсатора параллельно первичной обмотке, подбирая его емкость по минимуму КСВ на верхней рабочей частоте.

Для обмоток я обычно использую провод МГТФ-0,5 или более тонкий, если нужное число витков не умещается в отверстии. Заранее рассчитываю нужную длину провода и отрезаю ее некоторым запасом. Провод первичной и вторичной обмоток плотно скручиваю до намотки на сердечник. Если отверстие феррита не заполнено обмотками, лучше продевать витки в подходящие по диаметру термоусаживаемые трубки, отрезанные по длине «бинокля», которые после завершения намотки усаживаются с помощью фена. Плотное прижатие витков обмоток друг к другу расширяет полосу трансформатора и часто позволяет исключить компенсирующий конденсатор.

Следует иметь в виду, что повышающий трансформатор может работать и как понижающий, с тем же коэффициентом трансформации, если его перевернуть. Обмотки, предназначенные для подключения к низкоомным сопротивлениям, нужно выполнять из экранной «плетёнки» или нескольких проводов, соединенных параллельно.

Проверку трансформатора можно проводить с помощью измерителя КСВ, нагрузив его выход на безиндуктивный резистор соответствующего номинала. Границы полосы определяются по допустимому уровню КСВ, например 1,1. Измерить потери, вносимые трансформатором, можно путем измерения ослабления, вносимого двумя одинаковыми трансформаторами, включенными последовательно, так, чтобы вход и выход имели сопротивление 50 Ом. Результат не забудьте поделить на 2.

Несколько труднее оценить мощностные характеристики трансформатора. Для этого потребуется усилитель и эквивалент нагрузки, способный выдерживать необходимую мощность. Используется та же схема с двумя трансформаторами. Измерение проводится на нижней рабочей частоте. Постепенно поднимая мощность CW и поддерживая ее примерно с минуту, определяем рукой температуру феррита. Уровень, при котором феррит за минуту начинает чуть заметно нагреваться, можно считать максимально допустимым для данного трансформатора. Дело в том, что при работе не на эквивалент нагрузки, а на реальную антенну, имеющую реактивную составляющую входного импеданса, трансформатор передает еще и реактивную мощность, которая может насыщать магнитный сердечник и вызывать дополнительный нагрев.

На рисунках показаны примеры практических конструкций. На рис.5 - трансформатор, имеющий два выхода: на 200 и 300 Ом.


Рис.2. Трансформатор 50:110


Рис.3.
Трансформатор 50:200



Рис.4.
Трансформатор 50:300


Рис.5.
Трансформатор 50:200/300

Трансформаторы можно разместить на подходящего размера печатной плате,
защитив ее от осадков любым практическим способом.

Владислав Щербаков, RU3ARJ

Перекос фазного напряжения в трехфазных высоковольтных сетях – главная проблема качества электрической энергии. Она вызывает несимметрию токов, которые, в свою очередь, вызывают несимметрию напряжений и оказывает негативное воздействие на работу всех электроприемников. Особенно неблагоприятно явление перекоса отражается на работе асинхронных двигателей.

Использование всевозможных однофазных электротермических установок высокого параметра мощности до 10мВт и дуговых печей, работающих от трехфазной сети, что ведет к повышению доли несимметричных таковых нагрузок, создающих неравномерные нагрузки в сети. Поэтому несимметрия должна устраняться прежде всего в трехфазных сетях.

Симметрирование нагрузок — используемые методы

  1. Естественный путь выравнивания нагрузки по всем фазампосредством равномерного распределения токовых нагрузок, самый простой способ и самый реально неосуществимый.
  2. Повышение сечения проводов и значения мощности питающих трансформаторов.
  3. Уменьшение сопротивления нулевого провода в четырех проводных цепях.

Все эти способы не отличаются эффективностью за счет того, что требуют значительного перерасхода и применения дорогостоящих материалов. При использовании этих способов выравнивание напряжения по фазам не удается в полной мере виду увеличения и неравномерной загрузки фаз подключением мощных однофазных токоприемников.

Большего успеха достигло применение симметрирующих устройств (СУ), позволяющих устранить токи нулевой и обратной последовательности.

Градация эффективных способов симметрирования

  1. Преобразование и рекуперация электроэнергии, выполняемая по схеме 3-фазная сеть – 3-фазный электродвигатель – 1-фазный генератор –пофазная нагрузка. Способ не распространен из-за использования высокого значения номинальной мощности и высокой стоимости оборудования, а также потерь электроэнергии в сетях.
  2. Циклическая коммутация резистивной однофазной нагрузки к фазам сети за счет применения твердотельных реле и радиаторов.
  3. Фильтровый метод за счет различия параметров работающих электрических машин, используемых в качестве фильтра, задействованных не на полную мощность. Недостаток способа в чувствительности двигателя к перекосу нагрузки и напряжений и появление возрастающих сетевых потерь, нагрева оборудования, уменьшения показателей мощности, снижения эксплуатационных сроков работы машины.
  4. Компенсационная метода основана на равномерном подключении несимметричных нагрузок по фазам за счет использования симметрирующих трансфораматоров в 4 проводных сетях.
  5. Преимущества компенсационного способа

Компенсационный способ является наиболее эффективным, имеет ряд преимуществ:

  1. Высокие энергетические показатели симметрирования.
  2. Большое значение КПД.
  3. Низкую установленную мощность.
  4. Способность обеспечить симметрию высокой точности за счет применения стандартного оборудования, как: конденсаторные батареи, трансформаторы, реакторы, устранение перекоса фаз.
  5. Простота устройства, невысокая стоимость.
  6. Вместе выполнением выравнивания существует возможность улучшения качества электроэнергии.
  7. Увеличение коэффициента мощности электросети.
  8. Регулирование напряжения.
  9. Подавление высших гармоник.

Классы разновидностей симметрирующих устройств

Симметрирующие устройства подразделяются на три класса:

  1. Конденсаторные и электромагнитные шунтосимметрирующие устройства (ШСУ), за счет подключения в сеть реакторов и конденсаторных батарей, основанных на минимальном сопротивлении токам нулевой последовательности, за счет шунтирования замыкания на себя этих токов.

Недостаток – высокая цена реактора.

Применяются для измерения и управления.

  1. Компенсационные СУ – за счет включения в рассечку нулевого провода трансформатора компенсационной обмотки СУ. Малый диапазон симметрирования.
  2. Преобразующие СУ – за счет использования преобразующих статических устройств как-то: выпрямители, тиристорные регуляторы, высокочастотные преобразователи электромашины постоянного тока, использование электронных балластов в осветительных газоразрядных приборах и так далее.

Симметрирующий трансформатор ТСТ

Чтобы улучшить качество электроэнергии используется симметрирующий трансформатор, принцип работы которых основан на перемагничивании обмоток.

Трансформатор симметрирующий трехфазный служит для выравнивания значений напряжения на фазах сети, способствует энергосбережению за счет сохранения уровня напряжения и добиваясь симметричной фазной нагрузки.

Трансформатор с симметрирующим устройством способствует повышению степени надежности и длительности безопасной эксплуатации источников питания. Происходит это при использовании защитного зануления, «ноль» трансформатора задействован как нулевой рабочий проводник, а «ноль» сети напряжения применяется как защитный «ноль» электрооборудования.

При использовании ТСТ нагрузка по одной фазе воспринимается электрической сетью как трехфазная, что способствует восстановлению симметрии нагрузок.

Использование ТСТ вместе с трехфазным ИБП усиливает защиту 3-фазной сети от нелинейной 1-фазной нагрузки. для дополнительной защиты сети от высших гармоник используется регулировка амплитуды входного напряжения на входах управляемых выпрямителей и обоснованное ограничение диапазона изменения угла управления α.

Широкое применение модели симметрирующих трансформаторов нашли в радиоделе. Так, симметрирующий трансформатор, 1 1служит для симметрирования тока в плечах антенны и используется для подавления синфазного тока в оплетке питающего кабеля, где 1:1 это коэффициент трансформации напряжения.

При приобретении такой продукции, как симметрирующий трансформатор, цена зависит от параметра напряжения, на которое он рассчитан и коэффициента трансформации.

Так, к примеру, стоимость ТСТ 63 кВа трехфазного симметрирующего трансформатора составит более 115 тыс. руб.