Программы

Антенный анализатор. Антенный анализатор: обзор моделей, характеристики, инструкции

При настройке антенно-фидерных систем важно правильно измерить коэффициент стоячей волны (КСВ). Этот параметр в любительских условиях обычно измеряется с помощью КСВ-метра на фиксированной частоте, а частотная характеристика антенны строится рядом последовательных замеров. Для однодиапазонной антенны этот классический метод вполне применим.

Но чтобы настроить таким образом 7-и диапазонную КВ антенну, в которой изменение размеров одного конструктивного элемента влияет в разной степени на ее параметры на нескольких диапазонах, потребуется масса усилий и времени.

Тут необходим профессиональный антенный анализатор, который выведет на дисплей или экран ноутбука график значения КСВ, а также активного и реактивного сопротивления антенны в зависимости от частоты. Удобно и наглядно. Именно к такому выводу я пришел, когда смонтировал на дачном участке на крошечной, с трудом отвоеванной у жены площадке, всеволновую КВ антенну GAP TITAN DX.

Во всей остроте встал вопрос – покупать фирменный антенный анализатор или делать его своими руками. Учитывая, что этот прибор нужен не чаще раза в год, а на приобретение антенны уже была потрачена изрядная сумма денег, я склонился ко второму варианту.

Антенный анализатор должен быть по возможности простым, его настройка и калибровка должна быть доступна в домашних условиях без использования каких-либо образцовых приборов. Он должен обеспечивать панорамное измерение КСВ, X и R с выводом графиков на экран компьютера и (или) собственного дисплея в частотном диапазоне 1-30 МГц. Ну, и конечно, стоимость комплектующих должна быть существенно ниже стоимости самого дешевого серийно выпускаемого антенного анализатора. Противоречивые требования...

В качестве контроллера я решил использовать готовую отладочную плату Arduino Uno R3. И после длительных поисков и анализа существующих решений нашел хороший вариант антенного анализатора, который доступен для изготовления своими руками.

Впервые описание схемы, конструкции и принципа действия антенного анализатора, удовлетворяющего, на мой взгляд, всем перечисленным требованиям, было опубликовано в журнале «Funkamateur» №12 за 2004г. Авторы – Davide Tosatti (IW3HEV) и Alessandro Zanotti (IW3IJZ) . Журнал «Радиохобби» в №1 за 2005г. опубликовал сокращенный перевод этой статьи. За прошедшее с той поры десятилетие идея не только не устарела, но и получила дальнейшие развитие.

Польский радиолюбитель Jarek (SP3SWJ) на своем сайте разместил массу информации по дальнейшему развитию идеи. Множество вариантов схем и конструкций от VNA MAX 1 до VNA MAX 6, масса ссылок. Частотный диапазон от 1-30 МГц до 1-500 МГц. К сожалению, сайт, на мой взгляд, совершенно «бестолковый». Очень сложно понять, какая прошивка и какая программа для какой схемы. Где первая версия, а где последняя и т.п. Полную информацию, необходимую для повторения, выловить очень не просто, а для некоторых схем ее просто нет.

Davide (IW3HEV) организовал серийное производство своего антенного анализатора под брендом miniVNA . Красивая коробочка позволяет проводить измерения в диапазоне от 100 КГц до 200 МГц, а с дополнительным блоком и до 1,5 ГГц. Все хорошо, но почти 400€ за это чудо техники для российского радиолюбителя дороговато... Схема и описание miniVNA опубликовано в журнале «A Radio. Praktica Elektronika» №10 за 2007 г.

После этого краткого экскурса в историю перейдем к делу. Структурная схема антенного анализатора VNA показана на рисунке.

Сигнал с генератора на основе DDS через направленный ответвитель подается в исследуемую антенну. Сигналы с датчика прямой и отраженной волны подаются на уникальную микросхему от Analog Devices – AD8302. На ее выходе формируются два аналоговых сигнала. Первый пропорционален отношению амплитуд входных сигналов, второй – разности их фаз.

Комплектующие для этого антенного анализатора в общем-то достаточно редкие, но вполне доступные. Проблема в том, что найти все необходимые компоненты у одного продавца невозможно. А если приобретать в разных российских интернет магазинах, транспортные расходы становятся слишком большими. К счастью, есть Aliexpress и eBay. В общем, без помощи братского китайского народа я бы ничего не смог сделать.

Как я уже писал, основное требование к этой конструкции – простота изготовления и минимальная стоимость. При сохранении необходимых метрологических характеристик, разумеется. Поэтому я использовал в конструкции два готовых модуля. Первый – это модуль синтезатора на основе DDS AD9851. На небольшой плате смонтирована микросхема синтезатора, тактовый генератор и вся необходимая обвязка. И стОит этот модуль в Китае дешевле одной микросхемы DDS в России.

Второй модуль – «Arduino Uno». Это популярная отладочная плата на основе микроконтроллера ATmega328. Она включает в себя микроконтроллер, всю необходимую обвязку и конвертер USB-COM для связи с компьютером. И опять же его стоимость в Китае соизмерима со стоимостью одного микроконтроллера в России…

А вот измерительный модуль пришлось собирать самостоятельно. Его схема показана на рисунке. Сигнал с модуля DDS подается на монолитный усилитель DA1 типа GALI производства Mini-Circuits .

Важнейшая часть измерительного модуля – направленный ответвитель T1. От его качества зависит точность и частотный диапазон анализатора. Это так называемый «Tandem Match» – трансформатор на двухдырочном бинокле. Подробно методика изготовления «Tandem match» описана в статье в упоминавшемся выше журнале Funkamateur и в pdf файле, ссылка на который в конце этой странички.

К разъему X1 подключается антенна. В показанном на схеме отключенном состоянии реле K1 сигналы прямой и отраженной волны с направленного ответвителя через аттенюаторы 10 db на резисторах R9, R10, R15 и R11, R12, R16 подаются на входы DA3 AD8302. Аттенюаторы нужны для исключения перегрузки AD8302.

Этот антенный анализатор можно использовать и для исследования амплитудно-частотных характеристик электрических цепей. При включенном состоянии реле K1 сигнал с разъема X1 может быть подан на исследуемую цепь, сигнал с выхода этой цепи подается на разъем X2. Таким образом можно настроить полосовой фильтр, снять характеристику кварца и т.п.

Аналоговые сигналы, пропорциональные отношению амплитуд и разности фаз прямой и отраженной волны с выхода DA3 подаются на АЦП микроконтроллера ATmega328 в модуле Arduino Uno. Учитывая, что ноутбук в наше время перестал быть роскошью, я решил на первом этапе отказаться от собственного индикатора в этом антенном анализаторе. Вся информация выводится на экран ноутбука, к которому анализатор подключается через интерфейс USB.

Дополнительного питания не требуется, хотя на плате и предусмотрен стабилизатор на 5 В. Это в расчете на будущую модернизацию для возможности работы в автономном режиме. Конечно, на крыше с ноутбуком не всегда удобно, но зато читать информацию с большого экрана гораздо комфортнее и нагляднее, чем с небольшого дисплея.

Подключение измерительного модуля к плате Arduino показано на рисунке Программу для ATmega328 я написал на Си в среде CodeVisionAVR v2.05.0. Совсем не обязательно программировать Arduino в ее фирменной среде. Это имеет смысл только для тех, кто впервые сталкивается с программированием.

Тем же, кто имеет представление о других языках программирования, нет никакой необходимости разбираться в синтаксисе и других тонкостях языка Arduino. Ведь это упрощенный до предела Си, в котором отсутствует встроенный отладчик, тщательно скрыты от пользователя все аппаратные модули внутренней периферии контроллера. А о возможности ассемблерных вставок даже и речи нет.

Есть, конечно и плюсы у Arduino. Основной, на мой взгляд, это возможность загрузки программы в контроллер без программатора, используя смонтированный на плате конвертер USB-COM. Как это сделать читайте в полном описании, ссылка в конце этой странички. Предварительно потребуется скачать последнюю версию программного обеспечения Arduino с официального сайта и установить из него драйвер конвертера USB-COM.

Для загрузки HEX файла в Arduino Uno потребуется также программа XLoader, архив с дистрибутивом которой нужно скачать с сайта ее автора . Локальная ссылка есть в конце странички. Работа с программой проста и интуитивно понятна, подробности в полном описании.

Несколько слов об использованных деталях. Все резисторы и неполярные конденсаторы SMD типоразмеров 1206 или 0805. Индуктивности L1 и L2 могут быть как SMD, так и обычные для монтажа в отверстия. Резисторы R4 и R6 калибровочные, необходимость их установки и номиналы определяются при наладке. Стабилизатор DA2 в данной версии не используется, т.к. анализатор питается от USB. Он установлен в расчете на будущую доработку конструкции.

Обратите внимание на установку джамперов на модуле DDS. Они должны быть установлены именно так, как показано на рисунке – замкнуты J1 и J3, остальные разомкнуты. Схему и описание модуля DDS также можно скачать по ссылке в конце странички.

Для наладки желательно иметь ВЧ вольтметр, а лучше осциллограф с полосой пропускания хотя бы несколько мегагерц и частотомер. В крайнем случае можно обойтись ВЧ пробником на диоде и мультиметром. Здесь я не буду подробно описывать наладку, желающие могут ознакомиться с ней в полном описании,

Антенный анализатор работает под управлением программы Ig_MiniVNA. Ее последнюю версию до недавнего времени можно было загрузить с сайта http://clbsite.free.fr/. К сожалению, в 2015 г. ссылка перестала работать. Так что загружайте с моего сайта. Ссылка ниже. Это последняя версия программы. Действительно последняя, т.к. по утверждению автора при крахе компьютера он потерял все... Но программа работает как на Windows XP, так и на Windows 7 64 бит.

Работа с программой проста и интуитивно понятна, детали смотрите в полном описании, а также на сайте SP3SWJ . Этот сайт, к сожалению, только на польском языке и в большом беспорядке...

Для примера привожу вид окна программы при исследовании моей антенны в диапазоне 40м. Наглядно видно, что резонанс сдвинут вниз по частоте. Надо настраивать.

Частотный диапазон анализатора определяется в первую очередь направленным ответвителем, материалом его сердечника, аккуратностью и симметричностью намотки. Верхняя граница частотного диапазона зависит от типа DDS. Теоретическое предельное значение – половина тактовой частоты DDS, в данном случае это 90 МГц. Реально удовлетворительные параметры обеспечиваются до частоты не более 1/4 тактовой, т.е до 45 МГц. Но больше 30 МГц для КВ антенны и не нужно.

Антенный анализатор может работать под управлением еще одной программы - vna/J, которую написал Dietmar Krause (DL2SBA) . Ее можно скачать с его сайта . Программа написана на JAVA и может работать не только под Windows, но также под Linux и Mac.

Разумеется, предварительно нужно установить на компьютер JAVA. Интерфейс vna/J похож на IG_MiniVNA. Только после запуска программы из списка поддерживаемых устройств нужно выбрать miniVNA. Работа с этими программами практически аналогична. Для vna/J на страничке «Manuals» сайта DL2SBA есть подробные инструкции по установке ПО, калибровке анализатора, а также руководство пользователя.

Если эта конструкция Вас заинтересовала, можете ознакомиться с полным описанием, скачать чертеж печатной платы измерительного блока в формате Sprint Layout, его схему в формате sPplan, а также подробную методику изготовления направленного ответвителя «Tandem match», прошивку и проект программы для Arduino Uno. Для удобства я выкладываю все упомянутые выше статьи из журналов, а также программы Ig_MiniVNA и XLoader.

Внимание! При изготовлении печатной платы следует учитывать, что использованное в схеме реле чувствительно к полярности подключения обмотки. Если на обмотку подать напряжение обратной полярности, реле не сработает. Это может привести к погрешности при калибровке прибора. Поэтому перед изготовлением печатной платы следует уточнить по datasheet, куда нужно подавать плюс, а куда минус. Можно просто подать на обмотку 5 вольт и убедиться, что контакты перекидываются. Если полярность использованного вами реле не соответствует печатной плате, следует подкорректировать рисунок дорожек. Если плата уже изготовлена, придется резать дорожки - менять местами подключение выводов обмотки. Убедиться, что реле срабатывает в уже собранном анализаторе можно, если отключить провод «Rele» от Arduino и подключить его к +5 В.

– весьма полезный прибор Многие радиолюбители хотели бы иметь «фирменный» антенный анализатор вроде MJF259, или аналогичный. Но такие приборы слишком дороги… Однако, уверен, у каждого радиолюбителя имеется покупной или самодельный генератор ВЧ и частотомер. Используя эти два прибора и дифференциальный мост можно получить систему, способную во многих случаях работать как антенный анализатор.

Схема, показанная на рисунке, использовалась при настройке антенн КВ-диапазона, от 1.6 до 30 МГц. Нужен генератор ВЧ работающий в таком диапазоне А частотомер нужен для точного определения этой частоты. Впрочем, частотомер не обязателен, если ГВЧ имеет достаточно четкую и внятную шкалу. Сигнал от генератора подается на разъем Х1. Резистором R1 регулируется уровень (можно R1 и не ставить, а пользоваться регулятором уровня, имеющемся у генератора).

К разъему Х2 подключают анализируемую антенну. ВЧ напряжение поступает на первичную обмотку. ВЧ напряжение на вторичных обмотках трансформатора поступает на измеритель, состоящий из микроамперметра Р1 и детектора на германиевых диодах VD1 и VD2 Диоды должны быть германиевыми, чтобы обеспечить наибольшую чувствительность измерителя при индикации минимальных показаний (баланс).

Баланса моста достигают регулировкой резистора R3 и переменного конденсатора С5. Эти детали необходимо снабдить шкалами с указанием сопротивлений и емкостей соот­ветствующих углам поворота рукояток. Баланс достигается в случае равенства активных и реактивных сопротивлений в обоих плечах, Затем, добившись баланса, нужно прочитать значения сопротивления R3 и емкости С5. а затем рассчитать реактивное сопротивление С5 исходя из данной частоты. Таким образом можно будет определить активную (R3) и реактив­ную (С5) составляющую сопротивления анализируемой антенны .

Обратите внимание на емкость СЗ, которая составляет 100 пФ, то есть, половину макси­мальной емкости С5. Если при измерениях окажется что емкость С5 в балансе установилась больше 100 пФ, то это говорит о емкостном характере реактивного сопротивления антенны, а вот величина С5, установленная меньше 100 пФ, наоборот, говорит о индуктивном характере реактивного сопротивления в антенне .

Трансформатор Т1 намотан на ферритовом кольце 600НН диаметром 10 мм. Обмотки одинаковые, они выполнены втрое сложенным обмоточным проводом типа ПЭВ диаметром 0,35. Восемь витков, равномерно распределенных по кольцу. Начала обмоток на схеме отмечены точками.

Схема требует налаживания и градуировки. Переменный резистор R3 и конденсатор С5 нужно, как уже сказано, обустроить шкалами со значениями сопротивления и емкости, соответственно (потребуется омметр и измеритель емкости).

Далее, подключаем к Х2 эквивалент антенны . – сопротивление 50 ом, не индуктивное. На У1 подаем сигнал 15 МГц. Ставим ручку С5 в положение 100 пФ. Увеличиваем напряжением с генератора (резистором R1 или регулятором генератора) до максимального показания Р1. Затем, вращая ручку R3 ищем место с глубоким провалом в показаниях прибора. Далее, делаем показания прибора еще меньше, регулируя конденсатор С5. На шкале С5 делаем дополнительную метку, обозначенную «0». Это есть точка отсутствия реактивной составляющей в нагрузке. Промежуток от нулевой точки до максимального значения емкости С5 нужно выделить сектором и отметить как «Емкостная реактивность», а промежуток от этой же нулевой точки и до минимальной емкости С5 выделить другим сектором и отметить как «Индуктивная составляющая реактивности» Похожие материалы:

При настройке антенно-фидерных систем важно правильно измерить коэффициент стоячей волны (КСВ). Этот параметр в любительских условиях обычно измеряется с помощью КСВ-метра на фиксированной частоте, а частотная характеристика антенны строится рядом последовательных замеров. Для однодиапазонной антенны этот классический метод вполне применим.

Но чтобы настроить таким образом много диапазонную КВ антенну, в которой изменение размеров одного конструктивного элемента влияет в разной степени на ее параметры на нескольких диапазонах, потребуется масса усилий и времени.

Тут необходим дорогой или (полу)профессиональный антенный анализатор, который выведет на дисплей или экран график значения КСВ, а также активного и реактивного сопротивления антенны в зависимости от частоты. Удобно и наглядно.

Или даже такой, профисиональный, цена которого достигает 40.000$.

И вот встает вопрос – покупать достаточно дорогой или фирменный антенный анализатор или делать его своими руками. Учитывая, что этот прибор нужен не чаще раза, два в год. А все остальное время он будет хранится на «верхней полке». Если конечно не заниматься установкой и настройкой професионально. Смеюсь Или сделать самому (заказать) самодельный, не дорогостоящий, и доступных компонентов.

Антенный анализатор должен быть по возможности простым, его настройка и калибровка должна быть доступна в домашних условиях без использования каких-либо образцовых приборов. Он должен обеспечивать панорамное измерение КСВ, с выводом графиков на экран компьютера и (или) собственного дисплея в частотном диапазоне 1-30 МГц.

Все анализаторы, будь то самодельные или профи, используют практически одинаковый алгоритм, формулу для вычисления значений — измерительный мост. Разница заключается только в предложенном сервисе, комфортной работе, программном обеспечении, которое они используют.


В качестве контроллера можно использовать готовую плату Arduino Nano, плюс добавить стандартный модуль синтезатора частоты на AD9850.


Придется только соединить эти два модуля и дополнить платой с несколькими деталями измерительного моста по предложенной схеме.

В качестве «наглядного пособия», по которому можно периодически любоваться своими антеннами, используется компьютер, ноутбук с установленной простой, маленькой программкой. Управление прибором (железом) осуществляется стандартный кабелем через USB-порт.

Антенный анали­затор – весьма по­лезный прибор Мно­гие радиолюбители хотели бы иметь «фирменный» антен­ный анализатор вро­де MJF259, или ана­логичный. Но такие приборы слишком дороги… Однако, уверен, у каждого радиолюбителя име­ется покупной или самодельный гене­ратор ВЧ и частото­мер. Используя эти два прибора и дифферен­циальный мост можно получить систему, способную во многих случаях работать как антенный анализатор.

Схема, показанная на рисунке, использова­лась при настройке антенн КВ-диапазона, от 1.6 до 30 МГц. Нужен генератор ВЧ работающий в таком диапазоне А частотомер нужен для точ­ного определения этой частоты. Впрочем, частотомер не обязателен, если ГВЧ имеет достаточно четкую и внятную шкалу. Сигнал от генератора подается на разъем Х1. Резистором R1 регулируется уровень (можно R1 и не ставить, а пользоваться регулятором уровня, имеющемся у генератора).

К разъему Х2 подключают анализируемую ан­тенну. ВЧ напряжение поступает на первичную обмотку. ВЧ напряжение на вторичных об­мотках трансформатора поступает на изме­ритель, состоящий из микроамперметра Р1 и детектора на германиевых диодах VD1 и VD2 Диоды должны быть германиевыми, чтобы обес­печить наибольшую чувствительность измери­теля при индикации минимальных показаний (баланс).

Баланса моста достигают регулировкой резистора R3 и переменного конденсатора С5. Эти детали необходимо снабдить шкалами с указанием сопротивлений и емкостей соот­ветствующих углам поворота рукояток. Баланс достигается в случае равенства активных и реактивных сопротивлений в обоих плечах, Затем, добившись баланса, нужно прочитать значения сопротивления R3 и емкости С5. а затем рассчитать реактивное сопротивление С5 исходя из данной частоты. Таким образом мож­но будет определить активную (R3) и реактив­ную (С5) составляющую сопротивления анализируемой антенны.

Обратите внимание на емкость СЗ, которая составляет 100 пФ, то есть, половину макси­мальной емкости С5. Если при измерениях окажется что емкость С5 в балансе установи­лась больше 100 пФ, то это говорит о емкост­ном характере реактивного сопротивления антенны, а вот величина С5, установленная меньше 100 пФ, наоборот, говорит о индук­тивном характере реактивного сопротивления в антенне.

Трансформатор Т1 намотан на ферритовом кольце 600НН диаметром 10 мм. Обмотки одинаковые, они выполнены втрое сложенным обмоточным проводом типа ПЭВ диаметром 0,35. Восемь витков, равномерно распреде­ленных по кольцу. Начала обмоток на схеме отмечены точками.

Схема требует налаживания и градуировки. Переменный резистор R3 и конденсатор С5 нужно, как уже сказано, обустроить шкалами со значениями сопротивления и емкости, соот­ветственно (потребуется омметр и измеритель емкости).

Далее, подключаем к Х2 эквивалент антенны. – сопротивление 50 ом, не индуктивное. На У1 подаем сигнал 15 МГц. Ставим ручку С5 в положение 100 пФ. Увеличиваем напряжением с генератора (резистором R1 или регулятором генератора) до максимального показания Р1. Затем, вращая ручку R3 ищем место с глубоким провалом в показаниях прибора. Далее, делаем показания прибора еще меньше, регулируя конденсатор С5. На шкале С5 делаем дополнительную метку, обозначенную «0». Это есть точка отсутствия реактивной составляющей в нагрузке. Промежуток от нулевой точки до максимального значения емкости С5 нужно выделить сектором и отметить как «Емкостная реактивность», а промежуток от этой же нулевой точки и до минимальной емкости С5 выделить другим сектором и отметить как «Индуктивная составляющая реактивности».

Антенный анали­затор – весьма по­лезный прибор Мно­гие радиолюбители хотели бы иметь «фирменный» антен­ный анализатор вро­де MJF259, или ана­логичный. Но такие приборы слишком дороги… Однако, уверен, у каждого радиолюбителя име­ется покупной или самодельный гене­ратор ВЧ и частото­мер. Используя эти два прибора и дифферен­циальный мост можно получить систему, способную во многих случаях работать как антенный анализатор.

Схема, показанная на рисунке, использова­лась при настройке антенн КВ-диапазона, от 1.6 до 30 МГц. Нужен генератор ВЧ работающий в таком диапазоне А частотомер нужен для точ­ного определения этой частоты. Впрочем, частотомер не обязателен, если ГВЧ имеет достаточно четкую и внятную шкалу. Сигнал от генератора подается на разъем Х1. Резистором R1 регулируется уровень (можно R1 и не ставить, а пользоваться регулятором уровня, имеющемся у генератора).

К разъему Х2 подключают анализируемую ан­тенну. ВЧ напряжение поступает на первичную обмотку. ВЧ напряжение на вторичных об­мотках трансформатора поступает на изме­ритель, состоящий из микроамперметра Р1 и детектора на германиевых диодах VD1 и VD2 Диоды должны быть германиевыми, чтобы обес­печить наибольшую чувствительность измери­теля при индикации минимальных показаний (баланс).

Баланса моста достигают регулировкой резистора R3 и переменного конденсатора С5. Эти детали необходимо снабдить шкалами с указанием сопротивлений и емкостей соот­ветствующих углам поворота рукояток. Баланс достигается в случае равенства активных и реактивных сопротивлений в обоих плечах, Затем, добившись баланса, нужно прочитать значения сопротивления R3 и емкости С5. а затем рассчитать реактивное сопротивление С5 исходя из данной частоты. Таким образом мож­но будет определить активную (R3) и реактив­ную (С5) составляющую сопротивления анализируемой антенны.

Обратите внимание на емкость СЗ, которая составляет 100 пФ, то есть, половину макси­мальной емкости С5. Если при измерениях окажется что емкость С5 в балансе установи­лась больше 100 пФ, то это говорит о емкост­ном характере реактивного сопротивления антенны, а вот величина С5, установленная меньше 100 пФ, наоборот, говорит о индук­тивном характере реактивного сопротивления в антенне.

Трансформатор Т1 намотан на ферритовом кольце 600НН диаметром 10 мм. Обмотки одинаковые, они выполнены втрое сложенным обмоточным проводом типа ПЭВ диаметром 0,35. Восемь витков, равномерно распреде­ленных по кольцу. Начала обмоток на схеме отмечены точками.

Схема требует налаживания и градуировки. Переменный резистор R3 и конденсатор С5 нужно, как уже сказано, обустроить шкалами со значениями сопротивления и емкости, соот­ветственно (потребуется омметр и измеритель емкости).

Далее, подключаем к Х2 эквивалент антенны. – сопротивление 50 ом, не индуктивное. На У1 подаем сигнал 15 МГц. Ставим ручку С5 в положение 100 пФ. Увеличиваем напряжением с генератора (резистором R1 или регулятором генератора) до максимального показания Р1. Затем, вращая ручку R3 ищем место с глубоким провалом в показаниях прибора. Далее, делаем показания прибора еще меньше, регулируя конденсатор С5. На шкале С5 делаем дополнительную метку, обозначенную «0». Это есть точка отсутствия реактивной составляющей в нагрузке. Промежуток от нулевой точки до максимального значения емкости С5 нужно выделить сектором и отметить как «Емкостная реактивность», а промежуток от этой же нулевой точки и до минимальной емкости С5 выделить другим сектором и отметить как «Индуктивная составляющая реактивности»